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INTRODUCTION

This 15 a report on @ praject aimed at unc%erslanding and uitmu:iely u:z;z;w;zg
the problem-solving abilities of young children. Thcre‘ are batj prac ru.am e
theoretical grounds for such an effort. The pmcw_‘a‘l justification LUIHC'S lr e
ohservation that pmblcm—soivmg abilities are ymplicily assumed 1n eanly T_L ’
activities: for example, 1 the puuics and games nscd. 1o teach and test u;a a-
mentats of reading and anthmetic. Not only are rudimentary problem-so ;mag
skills assumed m the carly curnicula, but also advanced and g‘cner‘ai lpmbdeir:‘;
solving skills are an explicit goal of subsequent mstruetio. We have a‘ii af:air. he
claim that trawung in mathematics 0F reading (or your favortte subject) Cﬁ}:d??ﬂr
the ability of students 10 thnk logically. 1S somewhal curfaaus,ititens tha b
all the wmplicit and explicit emphasis o pmbicm-solvmg skills, they :mzt [T:n ?;
taught directly to young children. One long-Tange goal of this project, thert.
1o nstruct prcschool children on generai pwbiemsolvmg methods. "

The theoretical mterest 10 such a study denves from 2 1on at L{m other si f:
of the com: Children learn about problem solving, even wuhou% direct ;nstmt_t-
tion, Both miuition and casual observation mdicate t!m.ij as children appfc?a::la
school age, they acquire @ range of pn’),blem—soivmg sbilities that are typically

1 as “comumon senseé.

Ctmiffeimr::e;:;nﬁlyexampte of what 1 mean by CcOmMON Sense reasoning i a
young child. Consider the followmng scenario! .

Scene: Child and father in yard. Child’s playmate appeats on bike.

Child: Daddy, would you unlock the basement door?

Daddy: Why?

Child: *Cause 1 want 1o ride my bike.
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Daddy: Your bike 1s1n the garage.
Child: But my socks are in the dryer.

What kind of weird child s this? What could possibly expiain such an ex-
change? Let me propose 2 hypothetical sequence of the child's mental activity:

Top goal: ride bike.
Constraint: shoes or sneakers on.
Fact: {eet are bare.
Subgoal 1: get shod.
Fact; sneakers tn yard.
Fact: sneakets hurt on bare feet.
Subgoal 2: protect feet {(gzet socks).
Fact: sock drawer was empty this morning.
inference: socks still 1n dryer,
Subgoal 3: get to dryer.
Faetl: dryer 1a basement.
Subgoal 4: enter basement.

Fact: long route through house, short route through yard eatrance.

Fact: yard entrance always jocked.
Subgoal 5: unlock yard entrance.
Fact: Daddies have all the keys to everything.
Subgoal 6. ask daddy.

The example 15 real (in fact 1t 13 from my own expenencel and should be
plausible 1o everyone who has spent tune around young chiidren, On the other
hand, the analysis of the example 1s less convinding, hased as il 1s on a host of
assumptions. Some of these assumptions are easily testable. We could determine
whether the child knows constramnis, such as the one aboul riding bikes only
when shod. Similarly, we could assess the child's knowledge of facts about dryer
localion, shortest route to the basement, and so on. Somewhat more difficalt,
but still reasonabie, would be the job of finding out what sorts of inferences the
child was capable of making about her day-to-day environment, such as the one
about where the socks muight be, given that they were not m the drawer. How-
ever, the dominant feature of the hypothesized thought sequence Is not any one
of these features in 1solation. Rather, it is their organization into a systematic
means—ends chain. Thus, I am suggesting that by the time the child 1s old
enough to exhibit the sort of behavior just described, she has already acquired
some general problem-solving processes. These enable her to function effectively

— that 15, to achieve desired goals — by noticing refevant features of the environ-
ment and organizing a wide range of facts,
some systematic manner.

As it stands, such a suggestion is snremarkable. The mteresting questions

concern the detailed nature of such processes, their generality, and thew develop-
mental vourse. Paraphrasing Newell & Simon (1972

constraints, and simple mferences in

, p. 663), the question 15

e e i
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; -
{her we can view the child v some {ask envionments as an mformam:;h
thcessmg systeim, and if so, whether we can identify problem spacesé S:;:Qn
Pmateg:es heuristics, goal structures, and so on N a relatwely preu:ise a f;(m:l
s; raherm’ore can we determine which aspects of problem soivmqg erive
1:9, {ask environment and which {rom characleristics gf tze subiec;l. g chidrens
i n study!
distinet approaches oneé could takel
There are tWO rather e RSN
d by Chariesworth ,
ving. One approach, suggeste A
ptﬂbie!“ ; 4 observe the occurrences 0
il i : spective an
child from an stholopcal per
mi; day problent solving m the child’s normal environment. This 15 Climrz;:
v _ .
?abo):mus and lime-consunung way 1o po about the task, aitho;zgh lt;een;el‘:elop-
ue approach has certainiy ennched our xnowledge aboul early ang;l g .
: ent, and it may be the only way (o observe mteresting problem-s0 ving ;P e
[:1 ch;ldrcn fess than 2 years otd. The other apptoach, which we hav: ii;r(:‘ugmy
t : we €3
abori formal problems whose structuft
sy e in Teasonable control.
g (ematic varanls we can maintaim .
nalyze and over whose sys an mAmtain ¢ o ol
;mjough Negsser (1976} mveighs against such “artificiatl a(;u}l1 1;j§ciisewe
i chi ac nd ho
i kely that young children acquire @ ;
environments, it seems unil P e e
i -esses for faboratory experments
special set of cognilive processe b :
:ci:uon to those they use i the “natural environment of rOOMS, houses, tOYS,
cars, and piaygrounds. o
Thus, the mitial phase of this project has focused ;m g\z E_)f:rjg;::l:;:zhc
. -defin .
i to Syearsona variety of weil-d¢
children between the ages of 3 _ = e
first 1ask in the series, and the only one i will report on here, 18 the To

Hanoi.

THE TOWER OF HANO!

The standard versien of this task consists of a seres efrtt;ree pegs nr:id; :egtot;i :xs
i c ' disks sit mitmlly onone 0 the pegs, an
disks of decreasmng 5iz&- The 7 g
i tion to another peB subject O
to move the entire n-disk configura e R
i d4 at a time, and at no pont can 2 larg!

stramts: Only one disk can be move an )
be above a smaller disk on any given peg. A standard three-disk problem i
shown m Fig. 7.1, Hows:

To solve this problem you might reason as follows:

i have tO build the stack up from the i}ottcrf\. which means t;:t iBm;fltt
get disk 3 from A4 to C,but % 151 the way, SO I'il have to move 210 &

T —— -
{The many uses of this task reveal some of the changing gouls iﬂ%mzh?g;gfg;p:r;
mental psychology ovel the last 50 years (cf, Byrnes & S?xll, 279}7‘ ::13\:2 .19_”' {’eterson‘
Greeno 1974; Gagné & Smith, 1962; Hormann, 1965; Klix, 1971 . H

1929 Piaget, 19765 Simon, 1975; Sydow, 1970).
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A 8 C
Problem: Move all the disks from peg A to pegC.

FiG. 7.1 Theee-disk Tower of Hano problem.

if { want to move 2 to B, { must first get { out of the way, so my first
move will be 1 to €. Now let me reconsider the new configuration. To get
1 1o C, 1 still have to move 7 to B, which I can now do. Nowtoget3toC

I must remove } from C, so 1 will put it on B, and at last I can move Jto
C. And so on.

Although, as will become evident, there are other ways to solve the problem, the
example shows that even this simple version of the puzzie can tax one's ability
to coordinate sequential reasoning, perceptual discnimination, quantitative order-
ing, and short-term MEmory DroCesses. The task mvolves a well-defined initial
state, an unambiguous destred state, and a very limited set of rules aboul how to
change states. The difficulty lies 1n organizing a sequence of rule applications

{legal moves} that ultimately transform the mitial physical configuration into the
desired one.

Children’s Version of the Puzzle: Monkey Cans

For use with young children, we modified the task mn three ways that changed its
superficial appearance while maintaining is basic structure.

Materials. We use a set of nested inverted cans as shown i Fig. 7.2. The cans
are modified so that they fit very foosely on the pegs; when they are stacked
up, it 1s unpossible to put 2 smaller can on top of a farger can. Even if the child
forgets the relative size constraint, {he materials provide an obvious phystcal con-
sequence of attempted violations: Little cans simply fall off of bigger cans.
Furthermore, the materials are intuitively more “reasonable” in two regards.
First, unlike the standard problem in which small disks may obstruct larger OneS
with these materals, bigger cans obstruct smaller cans, either by sitting atop
them or by heing on a goal peg. Second, larger cans not only sit on top of but

s partially contan the amaller cans Each can 1s a different colot and makes 3
satisly g clunk with eacly move.

7. CHILDREN'S PROBLEM SOLVING 18%

Cheid's side
{Goal sjaled %

£ ;penmemer‘s side
{irunigl c1gled —*

F15.7.2 “Monkey cans” arranged for a one-move problem. Initak

configuration = state 2; goal configuration = gate | (sec Fig 1.5

Externalization of Final Goal. In addition to the current con‘i;:lgurat\?!n, {:;:
! { - configuration 18 always physically pres:cn!. 2 sthe fmm\
child's cans o @ target configuration and the experumenter s C:::S \:; e e
configuration. Then the child 15 asked to tell the experimen

id do in order to get fus cans (£} 0 took just like the child’s.

enmenter} shou . : e
":I);f:s procedure Can be used to elicit multiple-move plans: A child 15 3

f moves, which {he expenimentes then executes.

goal — Of targe

describe a sequence o

h
Cover Story. The problem 15 presented m the context of a story in whic

arge daddy, medium size MOMMY, small baby), who

the cans are monkeys {1 Ve akc 1 some good

. .

jump {rom tre€ 10 tree (peg 10 peg).k The chs‘l.i Gsp;r:::'!f g who o
; ’ eys are

configuration, the expermmenters maon ' , e

i ild” details on the cover slary gl

look just like the child’s monkeys (more : e

la!.erij The cans are redundantly classified by s:z;,h colo;, ar:c! ;:::131 ;Z{Sz Swrg
ke he chi to them. The subjects

to make it easy for the child to refer : . >

easy to comprehiend and remember. and they readily agree to consider the ¢

as monkeys.

Formal State Properties

Figure 7.3 shows all possible egal states and all legal moves fc;‘ th;;es::?;:ri?:;
it 15 calied the “state space.” No configuration 19 ropeated tde d-catéd by
states are indicated by circled numbers, and the can that i move 15 nidl e o
the number on the line connecting adjacent states- The solutiod :0 : ZCE For
¢can be represented as 3 path (a series of states) through the State pace.
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example, the minimum sofution path for the problem that starts with all three
cans on peg A and ends with them on peg C 1s shown along the night-hand side
of the large tnangle in Fig. 7.3, moving from state | (o state 8. The first move
involves shifting the largest can (can 3) from peg 4 to peg C, producing state 2.
The next move places can 2 on peg B (state 3), followed by a move of can 3 to
peg B (state 4), and s0 on.

There are no dead ends m this task — any state can be reached from any other

state — so that it is possible to consider very many distinct problems (702 to be
exact) simply by picking an arbitrary initial and final state. However, there are
no two states for which the murimum path requires more than seven mMoves.

Three paus of special states are indicated by the large squares, circles, and

hexagons: these are seven-move problems that begin and end with ali pegs occu-

pied. We call these problems “flat-ending” problems, and the “‘standard” seven-

move problems “tower-ending” proi:vh:ms.2 As we will see, they have somewhat
different properties.

ety e itk e

ITgwer of Hanoi buffs should note that the “monster problems” of Simon and Haves
{1976) are all five-mave flatending problems (e.g.. (1710 3,0r 13 to 6). An mitnl state
having all the objects on the wrong pegs ieads 16 @ shorter solution path then when one of
them is already (prematurely} i the right location {eg.,13t03or 17 to 6).
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General Procedure

imi he
the upper limit (measured by
al procedure 18 desipned 1o assess upper :
e ie [:t:‘rthepmxmmum solutton path} of children’s ability 10 solve this problem(.i
b 1(;hih} 18 mitroduced to the materals, the rules, and the cover storybias;ﬁ
Th:semed with a one-move problem {see Fig. 7.2), then a (wo-move problem,
f

aiid 50 O

SOLUTION STRATEGIES

We can expect children 1o vary widely n thetr ability to solve mesfe pro?iems{.
[&;jced if we took ahead to the most globai description of the C}\llfitg!l‘! s ptev;
fﬂ m:m,ce we can see {rom Table 7.4 that the best subject could rellahy s:y
o ; 4 do no better than two-
4 the poorest subjects coul
p-move problems, whereas t :
Sc‘:ac problems. To mterpret such cesuits, we need Lo propose ilyiputheses abc;?n
?]113 COENILIVE PrOCESSES that enable a child to solve problems rcimblyrup 10, o
ot heyond jength n. in this section, we starl with & model for per cfct pe‘r "
; ance, then consider — and reject — alternative models for suci‘x performance,
Z:d ﬁ;mily present @ SCTiES of *partial” modets to account for different degrees
of less-than-perfect performance. ‘ _
Cunsiderpihe pest performers: the S-year-olds w!;(o _couli rel:ablfhit;::bixzt
began to do the task, they new no
and 7-move prablems. When they _ e .
| 0 minutes, they were solving our i P
the Tower of Hanon after 1501 2 ' our har
lems with a hugh degree of confidence. What had they tearned? What could they
gitimately have acquired as experts O tius task?

An deatized Maodetl

The model 1o be described 18 essentially the ong first proposed by SirTK;n (195‘-15;.
He called it the agophisticated pcsccptual strategy.” The general proce ure 18

1. Compare the current state to the goal state and note all items that ar¢ not
i their final location. ‘ ‘

9. Find the most constraned item (in our ¢ase, the smallest can,Am ttn:11 stan
dard form of the problem, the largest disk) that is not yet on its o peg.

i i its goal peg.

3. Establish the goal of moving that item to1 _ N

4. Determine the smaltest can (if any) that 18 preventing you from making U
destred move.

5. If there 15 N0 such can (no cutprit), then make the desired move and start
ali aver again (go to steP 1} ‘

6. 1f you can't make the move, then replace the current goal with a :Oai o(t;
moving the culprit from its current jocation to @ PEB other than the (W
nvolved in your current goal.

7. Then retusn to step 4,
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SOLVE(C,G) C = Current state, G = goal stete
S1: Find differences between C and G. lf none, then done.
§2. n <- {(Select smaliest can}
§3: New.goal <~ (Move can n from Xte ¥}
<X = current peg of n, Y = goal peg of n>.
S4: culprit <- TEST {new.goal)
§5: If culprit = nil, then MOVE (nXY}; go to SL.
S6: eise new.goal <~ (Move culprit from X’ to Y'); go to S4.
<X = current peg of culprit, ¥’ = other of (X, Y)>

TEST(nXY)
T1. flist <- Seefrom(X) <ali cans above n an X>
T2: tlist <~ SeetolY) <all cans on Y larger than n>
T3 if tlist = nit & Llist = nil, then culprit <~ nil
T4: else culprit <= min{f list,Llistl exit

FIG. 74 SOLVE: A set of rules and tests for the “sophisticated per-
ceptual strategy.”

Figure 7.4 shows a concise semiformal deseniption of this sirategy.3 in
addition to the sx numbered steps just described, there are four “test” sieps
that describe the details of the “determne” m step 4. These correspond Lo 4
series of perceptual tests used to deteraune whether there 15 a culprit blockmg
the current poal and, if there 15 mofe than one, which one should be dealt with
first. T! notes any cans currently above the ttem whose move 15 being consid-
ered (i.c., on the “from” peg). T2 notes any cans on the current “to'" peg that
are larger than n. T3 tests for whether both of these lists are empty {nily: Y
they are, then there 15 no culpnit. T4 chooses as culprit the smallest of the
obstructors on the combined I (*from™ and L. {10} lists.

Figure 7.5 shows the first several steps that SOLVE would take when pre-
sented with the seven-move flat-ending problem starting with state 13 (2/113)
and ending with state 3 (1 [213).% All the steps listed precede the first move. The
full seven maves are shown in Fig. 7.6 {in abbreviated lorm). The figure shows
the series of goals and tests that precede each move. For example, lines 9 to 15
in Fig. 7.6 show that the first goat {line 9) 15 to gel from can | from peg B to
peg 4 (GI:1BA). The test detects that can 2 15 blocking that goal. Therefore, 1n
line 11 a new goai (G2:2AC) 1s generated, and 50 on. Notice that the full listing

3The models in Figs. 7.4 and 7.8 are wnittenasa sequence of FORTRAN-of ALGOL ke
steps 1 which there are severad subroutines that are undefined but whose functions are ciear
from the context, These models are not writlen as production sysiems simply because the
sncreased complexity requised by such a representation s unwarranted by the level of analy-
515 we are using here (ef. Kishe & Siegler, 1978; Simon, 19751,

4 he notation (21731 s used to indicate that peg 4 15 occupied by can 2, PR B by 1.
and pep C by 3. As another example, siate 27 0 Fig. 7.3 would be deseribed as 31/-12.
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Change C into G
¢ C. initial state: 21143 (State 13
G: final state: 1/2{3 (Stete 3)

g1: What's wrong? 1 not on A, 2 not on B.
g2: What’s the smaliest misplaced can? L.
§3: Get 1 from Bto A

g4: Can 1BA be dona?

T1: nothing on top ot 1

T2, something in the way of 1 on A 2

T4 2is the culprit.

56: Get 2 out of way of 1BA: Get 2 from A to C.

g4: Can 2AC be donel

T1: nothing on top of 2

17: something in the way of 2 on c. 3

T4 3is cutprit.

56: Get 3 out ot the way of 2AC: Get 3 from Clo B

g4. Can 3CB be donet

T1. nothing on top of 3

T2: nothing in the way of 3onB
T3: No culprit.

g5: Make move: 3 from C to B.

giGg. 75 Teave of first few steps of SOLVEun flat-cnding prohlea from
state 13 (2/1/3) te state 31723k

of Fig. 7.5 15 condensed into lincs 9 to 15 Fig. 7.6 The actual move l}i:at 15
made 15 shown under “Move™ column, and the resulting configuration 15 § u;m
under “Config.” (The last column shows the type of move that this new c;‘n ig-
uratton will require. Move types will be described 1m tlhe next section.) 1gsure
7.7 shows SOLVE operating ofn a standard tower-ending problem (state 151
Smt;ilil}(;n‘s (1975} labeling of this strategy 28 usophisticated” is apt. The sophis-
ycation lies w the strategy's use of the pnnaple that frard problems should be
soived before easy ones. More specifically, the most important thing to atte;}d to
s the most constrained oi);ecl.s If it can get to where it 15 BOIOE, the rest will be
easter. This principle 18 utilized m two places: $2 and T4. In S2, the synallest

———

Sin Piaget's (1976) study of 1his puzzle, children werg asked about which c::hiheg:tf::
traveled the most and whether they traveled morc on one pmb_lem or anather. A ?u e
rationale for this line of inqury was fever described, 1t may have been rel;%wd to tuzszm
issue. i children arcaware of the very differcnt numbers of moves that the disks m::lke ;U;::-i
the solution, they may begn 1o get a rudimentary appreciaion of the notion of the 1613
degpree of constraint that the task ymposed on the different iems.
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a3 133 i
o SOLVE strategy on flat-ending probiem
o5 initial: 2/1/3 Finat:
H 1 12
o4 123 Move Config. Typs
07
08
[43¢] G1i: 1BA 2 T2
10 Test: from {nill, to {2}; culprit:2.
" G2: 2AC
12 Tast: from {nill, to (31; eulprit:3.
:i G3:3CB
by Test: fram {nill, to [nil}; culpnt:nil,
- 3Ch 2131/~ T1
17 G1: 1BA
18 Test: from {3), to (2}
3 . : smatiest: 2, culpritiZ.
19 G2 2AC P2
2(: Tost: from {nif}, to {nil}, culpritnil.
22 1. 18A 2AC —-i31/2 F2
23 Tast: fram (3}, to {pil), cutpri:3
24 G4: 3BC
ig Test: from {nil}, to {nill; culpntiail,
x btz —/1/32 D3
28 G1: 1BA
iz Tost: trom (nit}, te {nii}, cotpritznil.
3 a5 208 18BA /132 F1
3z Tast: from {3}, to init}, culprit:3
:;i G6: 3CA
o Test: from (nill, 1o {nitl; culpritnil.
> 3CA 3i/-/2 D2
a7 G5: 2C8
22 Tast: fram {nif), to (nill, cuipntnil.
o 7. 3AC 2CB 312/~ DI
41 Test: from {nii], to {xnil), culpritinii, 3ac 1/213 i
goal

FI1G.7.6 Fulitraceof SOLVE on13-3 flat-ending problem.
can not :
- coyncsthon uds goal peg is selected as the one to attend to. In T4 the smallest
amned) of the obstructors of the current goal is chosen as the culprit
Move Type
oe le}rf‘pu. i'{fhus far, problems have been characterized by their mimmum
gth, it 1s also mstructive 1o consider the fype of moves that need to

ad - { yp ¥
be made !hc]& are htee move t es, dEStilthEShed b the lﬂHHEdEage reason fO!

1 moves Move o ce frec
) moves ove a can directly 1o s final goal configusation on the target pe
- Move a can from a peg w order to get lu one henecath 1t i

Y
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T moves: Move a can from a peg in order 0 facilitate movinga different can

o thul peg.

Table 7.1 shows the sequence 10 which these maves 0ccur along increasingly
jonger tower-ending solution pat‘hs_" The two shortest problems consist entirely
of imoves directly 1o the goal configuration. Problems of length 3 start with the
oval of the largest can from on top of the middle-sized can 18 order to move
it {the middle can} on the next move. Four-move problems start with the direct
move of the smallest can 1o the goal peg, and so on. Notice that ths classifica-
yon of moves according to why they are taken implies some sort of goal struc-
rare on the part of the problem solver.
The basis for this classification 18 revealed by close exammation of Fig. 7.7.
If we ask Yor the proxunate reason for any move, the answer i8 obtained by
ouking for the immediate supergoal that ihe accomplishment of the current
subgoal will atiow. Working from Lhe bottom 10 the top of Fig. 7.7, we see that
p1 and D2 have no supergoals other than the implicil sgoive” goal. F1 movesan
object that was discovered to be ona from peg for the preceding goal (2CA).
D3 15 another direct move. T moves can 3 again, bul ¢hus time because it Was on
the to peg of the supergoal. £2 and F3 both involve moving cans from the from
pegs of the respective supergoals. A similar classification for fat-ending problems
;s shown m the rightmost column i Fig. 77. Notice that for a path length
peyond four moves. the flat-ending problems have a different sequence of move

types from those of the tower-ending problems.

et

Alternative Maodels

The SOLVE model n Fig. 7415 very pawerfui: 1t will generale the minimum
path solulion for any three-disk, flat-ending ‘problem and for any n-disk, tOWer
ending prablen. Thus, it can be viewed a5 2 possible “cognitive objective”
{Greeno, 1976), that 15, as the ultimate goal of tratning Someone to perform
expertly on this tagk. What about other functionally equivalent strategies for
expert pcsformance‘? {n this section we summarize three quite different strate-
gies, described n detail hy Simon (1975), for perfect performance of the Tower
of Hanoi. We argu¢ that none of them ate as likely to be acquried by ouf
subjects as the sapiushcatad pe:ceptual strategy represented by SOLVE. ‘Then,
in the next section, We describe a seried of increasmaly powerful pa:tiai models

{hat culmmate the SOLVE model.

Goal Recursion. The goal recurston strategy solves tfe n-disk probiem by
cecursively decomposing it into three parts: (1) removal of the n—1 disk pyramid
from ihe nitial peg 1@ the other peg, (2) moving disk n from the mitiat to the

[y

6The numbers following the move type ndicate the order of accarrence for that type of
move as [onger and longer problems are presanted.Thus D2 isihe second D-move, £31s the

tisird F-mave, and 50 forth.
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TABLE 71
Move Types Along +aower-Ending Path

Move Type Sequence

Minimum

States

7th

6th

Sth

Sth

Path Length Isr 2nd 3rd

Final

Inirial

P N i I A~

J Y N

Tower-ending
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15 —+1 SOLVE strategy on Towar-ending problem

05 !nitva!:-—!321l« Final: 321/—~/— Movs Config. Type

06
~321/~ F3

a9 G1: 1BA
10 Tast: from {33.2), t0 {nit); smaiiest:2, cuipritid.

11 G2 2BC
12 Tost: from {3}, o (nil}, culprit:3,
43 G3: 38A
4 Test: from inill, to inil), cutprit:nib. 38A 3j21— F2
15
16 G1: 1BA
17 Tast: from £2), 10 {3%; srnatiest:2, cutprit:Z.
18 G2: 28C
19 Tast: from nit}, to {nitl, cutpritinil. 28C 3742 T
20
21 G1: 1BA
22 Tast: from {nil}, to {3} culprit:3.
23 G4: 3AC
24 Tast: from {nit}, to tnilk cuipritinil.
25 3ac ~fifaz D3
26
27 G1: 1BA
28 Test: from {nif], to {nill, cuipnt:nit. 18A /32 Fi
28
30 G5: 2CA
n Test: from {31, to {nit), cuiprit:3.
32 G6: 3CB
33 Tast: from tnil}, to inill, eylprit:nil, 3cs 132 274
34
ki) G5: 2CA
36 Test: from {nit}, to {nill; culpritinil.
37 2CA 213{— Dt
38
39 G7: 38A
40 Test: from (nill, 10 {milk; culprit:nik.
41 3BA 421/ —{~ goal

£1G.7.7  Full trace of SOLVE on 151 tower-ending problem.

final position, and (3) moving the n—1 disk pyramid from the other peg to the
goal peg. Steps 1 and 3 are accomplished by recursively applying the same
strategy. Two considerations make it unlikely that our subjects acquired this
strategy. First, they were given only fimited exposure t0 “pyramids” that seem
pecessary to induce the approach. The only example of recursion they encounter
1 the sevep-mave, tower-ending problems. Second, as Simon (1975) notes, to
execute this strategy, the full goal stack must be retained in memory- it isboth
necessary and sufficient for solution: “Al each stage, the problem solver can
decide what to do next without any reference to the current distribution of the
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SOLVE 2(C, G}

51: Find differences (C-Gl. | none, iban done
52: n <- {Seleci smallest). ‘
3 New.gool < [nXY]

54: Move; go to Sk

SOLVE.4C, G)

§4: Find differences {C-GL. Il

X none, lhe

S2: n <~ {Select smallest) - n done

§3: New.goal < [nXY]
;‘g: ;:;.Aprii <- TEST.A{new.goal}

: culprit = nil, thea MOVE[RXY]

i s ! ;. go io S1.

§6: eise MOVE[culpril, currental{culpril), empty ) go to s1.
TEST. 4{nXY}

T st < Seelram{X}

T3 culprit <- topiflist)/nil

SOLVE S(C, G}
S1. Find differences (C-G). [f no
X re, lhe .
52 n < {Select smallesi) " done
53 Newgoal <- [nXY]
gg: culprit <- TEST.5(nXY}
" If culpeit = nid, then MOVETRXY]: go t
. ] : go io S1.
56 eise MOVE[cuipril, currestofcutprith alher.o(X, Y} go to ©}

TEST 5[nXY)
Tl flist <- SeslromiX)
T2, thel <« Seels{Y)
T3 if tlist » nil, ihen culprit <- top{ilisty/nil
T4 slse cdpril < lop{lHst), axt '

FIG.7.8 Partial strategies: SOLVE.2, SOLVEA4, SOLVE.S

di .
h;zﬁ::r::;nyox:g the pegs. ]if only he can retain the unaccomplished part of the goal
n memory, he can calculate what needs to b
; ‘ e done without sight o
::;epi:zzi.e alnd w;iheui holding a visual image of it {p. 2701.” Given the ?ughE;
at display of both mitial and final confi ! ’
gurations, as well as the s
memory demands ol this strate i i oung
emory. ategy, it seems unlikely to be acqutred by young
areN{zi;Zt:n ;;;z: tgae hmemory c:emands of the sophusticated perceptual strategy
. Each new goal needs to be retained onl { i
make the move directly associated with i L
with it or to generate its immedi
. iate subgoal.
The subgoal replaces the immediately prior goal. After a move 1§ madeg CJ(‘::r
imagined), the eatire procedure s restarted and the differences between the

E ( g ) W CUHF Ta an ‘ Wh]{:;l 15 ph Slcﬁu ]Hese"t
actuai {of una Hled ne 1gUT tion d thc 0:.11
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Rote.  The move —pattern strategy involves three simple rules that allow one
amindlessly” o solve any tower-ending problem.7 (If you really want {o unpress
yOour friends, you should learn this and then apply it to @ seven-disk problem. ..
127 moves without 2 nitch!y This strategy, like Model 1V for the batance scale
(Siegler, 1976}, 15 easy {0 remember and execute, but it ts very hard to induce,
even for adults. 115 quite implausibie that our children acquired it m ths study.

Another form of tote strategy is based on 3 memorized list of moves. To solve
any specific tower-ending problem, the subject stmply cycles through the move
sequence he has memonized for that problem. Such a rote strategy could include
some degree of generality by beng couched n terms of mitial, final, and other
pegs. which are then instantiated for any particular n-disk problem. Another
form of roie stralegy would consist of a farge collection of S—R pais in which
S 15 a description of a specific current-final pair of configurations, and R 15 the
appropniate move in that situation (e.g., “state 5 (o state 8: move 3 tO ™y
Given the huge number of such specific associations and the limited exposutt
the subjects et to most of them, this seems L0 be an unlikely acquisition. Fur-
thermore, it could not explamn how subjects who have seef, for example, prob-
lems 201 and 3~1 \mmediately solve 6--8 ot 13-13.

Partial Strategies

We have rejected as unlikely the major alternative strategies that subjects mught
agquire as they become expert i thus task. Now let us attempt to characterize
the different levels of performance i terms of weakened versions of the sophis-
ticated perceptual stralegy (SOLVE) just described. Figure 7 8 shows three such
partial strategies. In each of the models, steps fiave been numbered to correspond
to the steps it SOLVE (Fig. 7.4} Fach model 18 named according to the length
of the problem that precedes the first error the model would make.

SOLVE.2 will solve up 10 wo-move problems, but it will fail on all longer
ones except D3. 1n step 2 it deternunes which of the differences involves the
smallest can, and 1t establishes (in S3) the goal of moving that can directly to
its goal peg- Having set the goal, it then makes the move (S4) without any
further perceptual lesting or coMmparisons. When presemed with anything other
than a D problem, SOLVE.2 makes the wrong move because it immediately
attempts 1o move the smallest can not yet on the goal peg. For amything other

e

Tgimon (1975} describes it as follows:

i. On odd-numbered moves, move the smallest disk; 2. On even-numbered moves,
move the next-smallest disk that is exposed: 3, Let PegS be the initial source peg, T
the tarpet peg, and O the other peg. Then if the total aumber of {disks] 1§ odd, the
smallest disk 15 always moved from StoTwO S, and so on; while if the total
number of [disks] 15 even. the smailest disk is aiways moved 1o the opposite cycie:
fromS100wTio $, and so on {p. 2731
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TABLE 7.2
Move Selected by Partial Strategees for Each Problerm Type
Along Tower-Ending Path

goat: 321 — [ =
Config. Partiel Strategies
A Type AlB/C SOLVE.Z SOLVEA SOLVE.S SOLVE
{ 2,y 243~ IBA iBA IBA 3gA
2 5 1/3/2 ICA 2CA A 2CA
3 FE 1/-132 ICA - ics 3CB 308
4 Dy -ft132 1BA IBA iBA iBA
5 T 312 iBA - 1BA- 3AC 3ac
6 Fy 321 1BA -~ 28C JAC* IBC
7 Fy 1321/- IBA - IBA, or 3BC* BCe 3BA

- iktegal
*Off mimmum path

than D problems such moves are iliegal. SOLVE.2 differs fram SOLVE (the
model in Fig. 7.4) 1 three respects: (1) 1t does not test the feasibility of the
move it wanls to make, {2) the only goal it sets always mnchudes the uitimate
goal peg rather than any temporary, mternally generated, subgoal peg, and (3y
i never determines the smaller of twa obstructors.

SOLVE.4 will solve all problems up to five-move problems. The steps are
cumilar to those m the SOLVE model, with two mmportant exeeplions, both
contained 1n 56. When a culprit 1§ detected. 86 does not establish a new goal
and then return to S4. Instead, # smmediately moves the culprit. Furthermore,
S6 does not have the concept of wother” The target peg for the culprit 1s simply
an empty peg. Further differences between SOLVE 4 and SOLVE lie m the very
weak tests that are used (o determine whethier a move can be made. These tests
determine only whether there 18 anything on iop of the can to be moved. If
there 15 nothing there, the move will be attempted (i.e., there 15 1o culprit, if the
£ list 15 empty).

SOLVE.S will solve problems up to length 5 correctly and then will begin to
makes moves that are not on the mmmum path. Unlike SOLVE4, SOLVE.S
now uses the concept of “other” when determining where o move the culprit,
but - like SOLVE.4 — it makes the move directly, instead of generating a new
poal. SOLVE.S also facks the full testing capacity of SOLVE. In particular,
TEST.5 does not determune the smallest of the potential obstructors o both the
t.Jist and the f.list. Rather, if the Llist 15 empty, then the culprit is whatever 15
sitting at the top of the flist, if anything. If the tlist 15 not empty — that s, if
there 1s something larger than the can to be moved on the target peg — then it
s assumed to be the obstructor (steps T3 and T4).

Table 7.2 shuws the move selected by each of the partial strategies for each of
the seven problem types along the tower-ending path from state i35 to state L.
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Consider the F2 configuration the sixth line of the table. The gez:; ésimwnu:li:i
the top of the table} 1 to get the three-can stack on pes A. SdOL} t.; W{Ji <
qotice that cans 9 and } are not on the goal peg. Then 1t wmixi set;c (;aaril .
{he can to be moved and would attempt 1o move can i duefzt y to the g . psi,
which 1s, of course, an iltegal move. SOLVE4 would eslz:bhshT m sle%s4 . 1(;
and S3. the goal of moving can | from B to A, a-nd then test it. TES S.ﬁ would
determme that can 7 on the f.list was {he culprit, and steps S5 and hwou
move the culprit, can 7, from where it 15, PeB B, to an empty peg, it Stosi ‘}cgsm;
peg C. This turns out to be — serendipitously — the corfect move. » .
would also enter the test phase with the goal of movm?: can | to A. ov.::ve;,
3 would fail, smce the tlist — the kst of cans on the “to PeE thgt are :;ge;
{han the can to be moved — would contamn can 3. Steps 5 and &6 SOL ;
would then move can 3 to the “other” peg. that 15, move 3 from AtoC, w!uclx,
although tegal, 18 not on the mpunum path. Of course, SOI.,VE would corr?(l::i‘y
decide Lo move 2 from B to C. {The details are shown in lines 16 10 19 of Fig.
17:;]1(3 pass/fail patterns in Table 7.2 are predicted a?t only ﬁ..)r the parlii(‘:lular
configurations shown fut also for any configurations ol the sgeuﬁed :ype. 5 1:1;.)
they suggest an empretcal approach sumilar to that u§cd hy Siegler {this va m?! '
fur delermiming which, if any, of the strategies a child 15 using. However, sua)x a
procedure assumes that the strategy beng used remans stable during the assess-
ment. Although the stability assumption 15 reasanable 1 cases where _lhe a'sselss;
meni yields nu fecdback for the subject (as 1 3 typieal pretest condition), it ¥
antenable m the situation that our subjects faced. For gach ncm,\the{y v»;cre
required to produce @ solution, and they werc well aware of how success uit se}({s
had been. Furthermore, 1n tius wital study, the prublem sequence was demgz;el
to assess only thew first pont of failure. Thus, although the p:lrim.lr mo cis
appeat 1o have a pmemsai for precist Jiapnosts, 11 ﬂus. chapter w: utilize omy
the predictions they rmake about the longest probleim reliably solved.

A STUDY OF CHILDREN'S PERFORMANCE

The study was run 10 1wo phases, with the second to some exic{ti being contin-
gent on the outcome of the first. The twa procedures are des?ribed separately,
and then therr results arc combined in the analysss. The main dtfferenge hetwa;:n
the phases lies in the age groups used and the amount of ntervention by the
experimenter.

Subijects

Thirty children attending the Carnegie—Melton University Chiidrel:‘n:;sns(cho;);
participated. There were 10 children n each of three age groups ) s“ me
3:10, range 3:8 t0 4:4), “4s" (mean 4:5. range 41 0 4:9), and 5% {mean
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5:9, range 5:2 1o 6:3). The sex ratio was approximately 50/30 n each age range.

The children came from predonunantly — but not exclusively — upper-middle.
class professiwoenal families.

Phase |; Purpose and Procedure

There were three goals for the first part of the study, which used the 4-year-old
group: (1) Explore the basic ability of uninstructed 4.year-old children to solve
problems of vanous lengths; (2) explore the extent to which they could describe
a multiple move sequence: and (3) explore the effectiveness of some rudimen-
tary mstruction, mcluding a graduated sequence of probiems and a few simple
hints about goals and subgoals.

The child was Familisnzed with the matersals shown n Fig. 7.2. Then the
rules and objectives were described m the context of a cover stary. The cover
story went sometiing like tus:

Omnce upon a ligee there was a blue niver [ pomt to space hetween rows
of pegsl. On your side of the river {here were three brown Lrees. Can you
count your trees? On my side there were also three brown trees. On your
side there lived three monkeys: a big yellow daddy [put yellow can on a
pegl, s medium-sized blue mommy, and a Hitle red baby. The monkeys
tike to ump from tree lo tree jaccording to the rufes] ; they live on your
side of the river. On my side there are also three; a daddy, [etc.] Mine are
copyeat moankeys, They want to {ook just like yours, nght across the river
from yours, Yours are all stacked up like so Fstate 171, mne are like so
fstate 2 or 21]. Mine are very unhappy: can you tell me what to do so
mine can look Hke yours?” [Theactual seriptss, of course, more elaborate. |

The problem sequence was generated by choosing wereasingly longer problems
from alternatmg sides of the two tower-ending paths termnating m state | (Fig.
7.3), for example, 211, 3—1, 191, 51, and so on. If the child suggested an
illegal move, the expernimenter would pomnt out the illegality. If the child had no
suggestion for a move, the experiumenter would make the correct first move and
then ask the child to continue. If the child was successful at completing the
problem i Lhe muimum number of moves, the cxperimenter would-give um
either another problem of the same length from the other side of the state space
triangle or one that was one move longer. The idea belund alf of this was to get
an estimate of the upper performance level of the child without either having
the child give up because of too many failures or generating lucky solutions.

As the child appeared to rcach his upper limit, the experimenter would begin
to give a systematic senies of hints, altempting to move the child through the
steps of the SOLVE strategy described eariier.

For the first few problems, the children were asked to stale not just the next

mave but the next several moves. Children vaned widely m their ability to do
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TABLE 7.3 .
Pairs of innal —Einal States for Probiems of Different
Path Lenglh

Problem ’
I Z':zf;:ih Order Tower-ending Flat-ending
g
19—+ ¢ 19 *3
? ;; 4 233
€ 18 > 15 22 *6
d s+ 8 116
o g5 -+ | 18 *3
! :\11 ig = 1 24 ~*3
§9 -* 5 17 46
((:5 4 > 8 126
T 17 % T3
’ ‘:) 6 * | 113
0 -+ 1S 19 > €6
ti 3+ 8 15 4
o o . 7+ 1 15 <+ 3
° |113 6 > 12|
[ 21 > 15 5
d 2 -+ B 6 6
R — T T
- 1
15 1 14 =3
! b C 16 6
b 1S HE MR
{c:i { > 8 [ i -}

s vanations, For many children,

: d 1o adapt to the
(s, and the expenmenter tned to acip ven up after the first few prob-

the attempt to elicit multiple-move plans was gl
lems.

Phase 11: Purpose and Procedure
The three objectives of Phase 11 were a8 follows:

|. Further investigation of the effects of't-y.pes of m?;esgl;l;:;iuie?::g;
varymg the goal configuration so that the possibility of gpeu i::d e s
srations bemng assocuated with specific moves ce'uid' cd ;;at,endiné s
accomplished n two ways. First, both tower-ending an e um)uon e
were presented. Second, within 3 problem type. the goal contlg

sally changed.

symle‘méit:;:niuon (%f the confounding of the two types of 1nst;uc::}r;.nl:a:::5'
phase, no guidance was BIven when children reached thewr peak ¢
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TABLE 7 4
Number of children in Each Age Group Who Could felizbly Solve Tower-ending

Broblems Up to But Not Beyond Given Length

Problem Length [N

Age

————————

Range

Mean

Nominal

(0 9%

12

(©.7

29
42

10
16
HU

3:8 - 4:4

310
4:5

™

4:1 - 4:9

56

- 6:3

[t}

5:9

«3

30

13

~¥
I

30 24

30

Cumuiative?

086

040 046

000 0.2¢ GO08

Nontransition probability

a .
Total number (alf proups) solving problems up to and including given problem length
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“instruction” conststed of presenting the mereasingly fonger prablem

The only
hen subjects did not know what to

sequence and making the correct first move W

do.
3. Begmmng (o measure age-related differences on this 1ask, The 3- and

5.year-old children described at the begnning of this section served as subjects
m Phase 1L The apparatus, cover Loy, instructions, and so on were identical
except, as just mentioned, no hints werc given when subjects began to faller.

Table 7.4 lists the initral and final states for the problems used m this study.
(Reference to @ problem as having wp.moves” means that the mmmum path has
n moves). Of course, one could solve an n-move problem i more than n moves.
alt the T-T problems end with states i, 8, or 15 and start somewhere on the
outer contours of the extertor triangle w Fig. 73. All mummum paths for T-T
problems are also along these contours. All the flat-ending problems end 1 states
1 or 6 and start 1 some state on the wmterior wregular hexagon n Fig. 7.3
(except for the seven-move, (lat-ending problems). Notice that along the
punununt path for all flat-ending problems there are no flat configurations other
{han the final one (again, except for the seven-move, flat-ending problems).

The problem sequence was generated by selecting initial-final pais as follows.
The first iwo problems were 21— {one-move} and 3-1 (two-move). {These
were always solved cosrectly.) Then a series of tower-ending problems was
selected from the list i Table 7.4. For a given problem length, i, problem 4
was presented first. if it was correctly and confidently solved, then 1 was mere-
mented by 1, and problem 4 of the next length was presented. If there was
hesitation of apparent uncertainty, problem & of the same length was presented.

If there were any errors, the problem was remnitialized and the first move was
made by the experimenter (this would convert the a problem of length 1 into
the b problem of length 7 - 1). If two of the three remaining problems were
correetly sulved, then 1 was increased agam. Otherwise, the T-T sequence was

d, and a shift to fiat-ending problems was made, starting with length

terminate
ding series. This procedure

n-2, where n was the current level for the tower-en
was designed to present a Senes of longer and longer problems ending in state i
until the subject reached his upper limit. Then problems ending in states 15 and
8 were presented fo assess one tevel of generality of what had been jearned.
Following this, the flatcnding series was presented 1o test generalization still

further.

Results

Path Length. At any poimnt 1n the solution of a problem, the child can
suggest cither the correct move OF several kinds of “incorrect” moves. These
include legal moves not on the mimmum path, illegal moves, and “don’t knows.”
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TABLE 7.5
Number of Children Relisbly Solving Tower-ending and Flat-ending
Problems of Each Length?®

FLength of Tower-ending

1 3 4 5 3 7

H ] - _ B . |

2 2 . 2 = B 4

3 - i I i . _ 5

Length of 4 - _ - 4 ; ) :
Flat-ending 5 - _ _ _ ; . X
6 - - i |

3 1 3 3 4 i

TThree-vear-olds (n = 1), S-year-olds (2 = 10}

A global measure of the child’s ability 1s the length of the longest problem (or
subproblem for which he reliably stays on the mimmum path.

The distribution of subjects reliably solving problems of a given length 1s
shown 1n Table 7.5. The age differences are clear and striking. The regularity of
the age effect indicates that the sennclinical procedures used in Phase | did not
sertously distort the assessment of maxunum performance levels, although at
may have increased the spread of the 4-year-old group somewhat.

Consider first the d-year-olds from Phase 1. None of them could solve the
seven-move, tower-ending problem reliably. However, two of them could do the
six-move problem. that s, they could solve the seven-move problem if the first
move had already heen made. One child could do no betier than the two-move
problem, and most of the children could reliably do up to four-mave problems
before they began to err.

Five-year-olds were just about evealy divided between five- and six-move
problems, and one of them could solve seven-move problems. The 3-year-clds
fell into two major groups: those who could not get beyond two moves and

those who could de four-move problems.

Recall that m the tower-ending series, subjects recewed problems ending n
different goal states to ensure that they had not simply learned moves from
specific stimulus configurations. Thus, we are farrly confident that a subject
classified as an n-move child could solve problems starting n moves away from
any tower. Flat-ending problem performance further assesses the generality of
what subjects know about the problem. Table 7.5 15 a cross classification of
three- and five-year-old children according to thewr maximum performance on
tower-ending and flat-ending problems. (Oniy seven of the three-year-olds are
inchuded here. The others were never run on {lat-ending problems). The data
suggest that fat-cnding problems are uniformly harder. For example, af the four
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i blems, only one
: to SIX-MOVE, {ower-ending pro
qdren who could solve up , ‘ T O o
(:.51‘?(; solve the five-move, flat-ending problem, and three ﬁ?sid Smb;em A
. {lat-ending problems. No child could solve a flat-ending §evels s
;ngvf(;wer-ending level, and most of them droppesd down ;\:zand q‘.mdmm -
. he lower Tight-
i 10 entries in th A
: ery regular m that the e
ls JESS{3 e‘;r-gldsgthc athers are all 3 years of age. These resuitsdaif :F?;, o lems
o Y tial médeis @ weik sense. 1t can be éemonstrate‘ 1i ot
o 5"1:1 fength 1, the partul models make nonaptimal of :ilefgr:he o ol
hevz::ms bcfme'ihey make any errors on tower problems 0 e o
Pro"fi decline n performance as path length 1ncreases is very ur g . ,t o
t ualast line i Table 7.5 indicating the condittonal pmbabm;{ 1:10F o
12 .5, , the co : b
‘:lm can sulve an r-move problem will fail an n +j :'n?\ie fi;o e o of
hildren who could solve two-muve problems. stx (._{]/r:?_ LU‘ ié; o four
ci‘l 34 who sofved three-moeve problems, only two (8/3? LO_L: O O at vory
“w; roblems: and 50 on. Fur the total group of snb;eus,dl i e
l;::t.v 'fjpcak" a1 three-move problems: They can cither do 9
d he longer ones.
- coblems or they go on et . e s
twqf;m;ve rzsuils motwated the set of partisl models described earliey. e
giVEl hecause cvery subject could sotve at least lwu-muvcl Fe uem;
q"(: y th -SOLVE models were proposed because of the suhs;[ann:x ; c;hown

T whic : fier. Althougs Y .

i 5 could go no furt :

i 1 subjects at levels 4 and shown
WﬂSI{EJr,’i;IEL 6 m(idcl can be derived from SOLVE t;jrvz:emi;liré% tfilgnf;%lgvygs
. . 2 with 3.

hat i lacing 56 n SO
te 2 new poal, that is, by rep : LVES.
Eeﬂga measurcgof the retative difficulty of different move Lypes 15}:]1;”1 e
f n:my with which the correct move s made for problems starting
requenc
T 4 4-year-olds make
lyp;i()i;:u'i 9 shows the mean relative frequency with which 4 ye;xr{:éves ake
the cgorsect -ﬂrsi move on problems starting with daf{e;fnlé;;pi:lga " mm; Fer
first encounter: For U1, :

e on Dt and D215 perfect on .
{;ijzmcai?lfd could do wrong, and for D2, the major problem 15 10 determ
correct order in which to move the (wo czins to {t:,el fot‘;lep:;gédium e The most

largest can .

wires the removal of the 1 Hun he ros
fi Flerraiqe{rur here 15 an atlempt to move the medium can dire«.li:{,t\;atrl:mve o
oo to attemp

i * frequent error Is . -

ving its obstructor. Another ' v i

rne}n:ﬁumgone while the large one 15 held aloft or while the large olne is t:uci meg:;
le d in the “river.” The incorrect moves here are almost always
place .

PR

can twice 1 3 oW
Bin a sequence of maves, the heunstic of never movmdg lt;ieﬂfx:zr afm o,
& 0.5 probability thsai the correct Move will be made. . o e where 1
E_‘V?'S . s lovel i Iy 0.33 (except for the first move i the seyen-move p ey
meﬂ [;i:m;;:fjjv:i':i;so(:t:x’::t;mutec the chsnce pmbabiliiy of a correct Move, since subj
15 0.5). Eve : <

suppest illegal moves as well.
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£1G.79  Mean relatve frequency of correct first move for problems
sturtimg with a given move type (number of subjecist.

suggestions; rarcly are they either of the two legal moves off the mummum path.
In our procedure, the F1 1tems represent the child’s first “real” problem; as
Figure 7.9 shows, few of the children know what to do at this point.

Although D3 1s lour steps frum the goal. 1t 15 a move that would g prior seem
obvious, but 30% of the children err vn thew first encounter with t. Since all
the models predict a correct move here, this result poses another challenge to
the proposed partial models.

Move T 15 unique. It 15 the only one requiring that a can be moved away from
its ultimate goal peg, and 1t has a low iitial score. SOLVE.S 15 the first modei
with sufficient power to solve T problems.

This analysis reemphasizes what the models are intended to convey: The
relationship between mitial and final states 15 not simply one of distance 1 the
state space. Instead, the type of move — implicitly characterized by the mental
operations that generate it — appears lo be of central unportance.

Learming. The distinctiveness of the move types 1s further revealed by an
analysis of the rate at wiuch they are learned. One rough measure of the rate of
learming 15 a plot of frequency of correct moves asa function of the eccurrence
of that type of move. The 4-year-olds” “learning curves™ are shown in Fig. 7.10
for four move types. Figure 7.10 shows, for example, that the first time move
type B 18 ereountered. 1t s never made correctly. Far 50% of the second

7 CHILDAEN S PROBLEM L0 ViING M5

QCCUFTENCES of F1, the correct move 13 made, and by i.h.e tinrd tune any p;frnciu-
jar subject has encountered an Fl move, the probability 15 about 0.9 that the
. : ve will be made.

w{'rl?;;; rcr::l)otatlcm marks around “learmng curves” are a remunder of the rat!‘;er
complex data base that underlies them. Recall that the first occurrence O r;
mave lype is also 2 problem that stars with that move. Subsequent occurrgnce‘
are aimost always reached en passant {rom {onger problems. Hewevar.‘ii'us is n;

invartably the case, hecause the experimenter would, for example, oncasxonag
drop back to a 3 or 4-move problem if the subject had erred on a {onger E1)3r0 E-
lem when only three or four moves from the goal, Furthermore, as 4 gej s
reached therr peak performance, they dropped oul of the data ba§e completely,
so that the later oceurrences of any move type include onfy the higher pefrfl(:rm—
g subjects. For exampie the § pomis for t.he Fi curve are based t;ngthes'r; ;a;
g ralios of cosrect moves to pumber of instances: 0/10, 5/10, ;’f ,l . m,
516, 3/3, 2/2, 22, For F2 the ratios are 5/8, 3/5, 2/3. As a resuft of these com-
plications, the curves m Fig. 7.10 pverstate the rate al which the moves are
jcarned and understate the differcnces in the lypes of mo".'es.

What could subjects be tearming? First, let us consider what they are nf)t
fearsmng. The data lend no support to the notion that what subjects learn i 2 list
of moves. That 13, having jearned that from state 2 they can pet to the goal
(state 1), and from state 3 to state 2, subjects do not, upon {irst cncgu_ntermg
state 4 (requinng an £l move), search for a move that produces a familiar ‘stT_lc
(3) that 15 tnown to fead to 2 solution. If this were the case, then the data lot
first-move accuracy (Fig. 7.9} and acqussition (Fig. 7.10} would be much more

Fy
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systematic than s actually the case. For example, even though D2, when 1t 13
physically present, always produces the correct mave, when 1t 15 one of several

possible states that could be reached from FI, it s not immediately recognized 15::3 Psfﬁﬂ’_—‘},

as being a desirable subgoal along the solution path. Figure 7.10 suggests that the :9503 5:44 S: Like that. fike that.

F1 and D3 moves are acquired quickly relative to the T, F2, and F3 moves. Suc- E: Like that, and they ail want tohe over hare (Al
cess on these first two move types corresponds directly to the transition between 10800  5:49 S: Well, thatis prety hard, but § can do L
SOLVE.2 and SOLVE4. The additions to the_SOLVE.Z strategy are a simple : ﬁgg 57 Esogh take.. V' thinking.

test before attempting a move {84, and TEST 4 in SOLVE.4) and a direct action 20200  6:10  E:Whatarovou thinking about?

contingent on the outcome of that test (85 and S6 n SOLVE.4). The transition

20300 §:12 S:Howwe shoutd do this.
from SOLVE.4 to more advanced strategies requires an elaboration of the test

20400 E: Tell mo what you're thinking?

for legal moves, the ntroduction of the concept of the “other” peg, and for 0500  6:18 Aha:.: ho‘: o du::'l:h How should we do it?
. . . - U H
SOLVE (ie.. for F3 problems), the generation of a new goal rather than a direct 20600 18 Eé‘?i‘;{mf:“‘:mlv:m
move. As suggested by Fig. 7.10, these acquisitions and their organization posed ;gggg 6':38 : B vow (3) o and put ho vellaw ona on hers .
a formidable challenge to our subjects. 21000 and than taka the red (1) and putitan there (A], and take the...
21100 and then put the yeliow one and put it on here (Bh, ﬁiﬂd then
1 ; t thie yellow one on

Mixed Strategies. Subjects who manage 1o get beyond the three-move, 21200 put the biue one {2] on the rad, and then pu ¥
tower-ending problems almost invarably run off the last three moves very 21300 o5 E“‘: ?.’“::'::;t

3 - o . 400 1 : Let's try .
rapidly and smoothly. Even with the expermenter moving the cans, this ;11500 What's the first thing | should do?
sequence, which always mvolves moving a two-can stack to the goal peg, takes 21600 Y ou ssid...
a0 mote than a few seconds to execute.

Recall that this 1s the sequence starting
with F1, the move that 1s never correctly ade on fisst oceusrence. From fist | e T T T
occurrence to last, there 15 a reduction by a factor of at least five 1n the lime 1t

21700 71 §: Taka this one {3} and put it on there {C}...616.

takes to run ofl the Lhree moves, pobe pssesgi;ﬁj
What seems to be happeming 1s a shilt from a simple, direct strategy . ;;Zgg )
(SOLVE.2}, to one that has additional steps and Lests (SOLVE.3), to the further 23700 7:26 S: Oh.that.
development of a specialized local procedure. As SOLVE.3 first develops, the 23800 7:31 0.K. That's easy- J ot it on thars {B1.
child appears to consider the differences between instial and Ffinal states and to 23800 J“’; ‘::" :h:.‘:,:::?::;?g;i.a:t; i and take, take the be.
proceed in 2 means—ends fashion to reduce those differences. After several i:(.:gg ;i: ?;:, e,ak: ,Za blue one, put it on there (Bl and then, then,
such experiences, he acquires not just the single correct move but the entire 24700 ‘ 1ake ﬁ;u yellow and put it on the blue {pownts toward C, then
sequence. For example, n the case of FI, what appears to be acquired is the 24300 to Bl, and then take the red ono and put it on here (A%{Ii.thm "
three-move sequence for moving a two-can stack 1o the goal peg. A possible 24400 787 And than take the blue one a“d‘”ﬁt a:ith::;'f: the ’
form for the “‘subroutine” is 24500 tha vetiaw one hore (C). and then Pt 76 L
24600 rad one. snd then put the yellow one on the biue one.
24700 g:08 E: OK. What's first?
Goal: [32 —Goal.pegl 24800 §:07 S First, teka this {31 and put it on there 8.
Move {3 ~rempty.peg] 25900 £:{3 78} ]
Move [2 - Goal.peg] 25000 8:13 -S: No,lwaswreng‘:“!-‘nrget i
Move [3 —+Goal peg] 25100 € pt‘:ts‘.i B O e d put it on there (B}
25200 B:15 First take the blue gna and p
25300 E: {2 7B}
This representation 15 “rote” 1n that it generates a move sequence without any 25400 S: Now take the yeliow one and put it on there (B)...atc.
further reference to the stimuius configuration, once it1s evoked by the need to N
mave the 32 stack. It 1s “general” to the extent that the peg containing the stack £1G.7.11  Protocol from subject aged 4:11, showmng five-move {z) and
and the goal.peg are vanables to be instaniisted by the particular evoking sux-move (b} plans.

circumstance. However, the goal.peg must be the peg m the final goal and not

207
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some intermediate goal. This limited generally keeps thus routine from being
evoked at the start of a seven-move problem. Even if the goal of moving the two
top cans off the smailest was generated at this pomt, the routine just described
would not be evoked because the target for ths first placement of the two-can
stack is not the goal.peg. A further limitation of this soutine 15 its meffectiveness
on flatending problems.

All the partial strategres described earlier (except for SOLVE.) are likely to
have something Hke this routine in addition to the steps shown m Fig. 7.5. When
it 15 evoked, 11 takes over, Tuning off the last few moves. However, since 1115 of

no use on flat-ending problems, the strategles listed would mamtamn control to
the very end.

Planning. At tunes, {he experimenter asked the child for not enly the next
mave but the next several moves. Few children verbalized muittiple-move se-
quences beyond a few moves. Repeated requests to do so appeared to confuse
them and had to be terminated. However, those who could and would verbalize
showed a remarkable ability to describe a sertes of imagined future states and
actions on those states.

Perhaps the most tmpressive plans are shown Fig. 7.11. They came from &
hoy, aged 4:11. At the top of Fig. 7.11, the complete five-move plan 15 verbal-
wzed after about 60 sec of study (lines 209-214}). The next problem for the same
child has a six-move mnmum path. The child starts verbalizing a move sequence
after just a few sevonds, {239-240}, corrects hymself, and then smoothly raltles
off a six-move plan (241-246). Notice thal when he starts to make actual
moves, he makes lhe same imitial error and recovery {248 752} that was 1 hi
verbalizations.

This protocol (as well as several others not mcluded here} 15 m striking con-
trast to Piaget’s results and nterpretations of his imvestigations of the same task
(Piaget, 1976). He reports that before the age of 7 or B years children did not
plan, even with the two-disk problem. He concludes that they cannot “combme
inversion of the order” (in our context, putiing the baby under the mominy,
while the mommy 15 moved first} with a “‘sort of transitvity” (using an inter-
mediate peg to hold a can temporarily}, There is, Piaget says, “a systematic
pnmacy of the trial-and-error procedure over any attempl at deduction, and no
cognizance of any correct solution arrived at by chance [p. 2917 .t find it hard
to reconcile this mterpretation with these protocols.

Summary of Results

The following picture 15 emerging: (1) Path length 15 2 factor m problem diffi-
culty, but it s confounded with move type, wiich seems to be much more
important, (2} Path type 15 important, but we cannot conclude that flat-ending
probiems are mtnnstcally more difficult than tower-ending problems because
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they o€ always gven after towemnding_ problems. Rather, we can cunci;dg&
(hat whatlever is acquired on tower-ending problems 15 tess eﬂ'f:ctwe (_)?f at-
ending problems. () will hazard a guess, though, that even with a different
{ramung sequence, flat-ending problems wilt turn out to be harder..’fhe rease::1
for this prediction 15 given later.} (3) Age effects are clear, significant, a'n

monotonic. There are no U-shaped performance c.ufves. (4} Planning, or at jeast
yerbalization of move sequences, s difficult to elicil. The rate OCcuIrences afre,
however, quite 1MPTESSIVE. Notable m ail the pmtocols 1s the ghsence © da
sertousty ncorrect plan. Subjects sither can say what they are.gpmg to do
correctly of they say nothungat all. (5) Learming rates are very sensitive to move

type:

Goal Ordering

Recall the earlier comments about the focus of “suphustication” 10 the SOLVE
mudel. Buill into every model, as the second step. 15 the knowledge that the
saliest cans must e attended o first. No child, even the J-ycar-uids, ever at-
tempted to wvert the order of moves vl Lwo-move preblems. This ordering tukes
place every fime a new sHualion is assessed (Step 2} and, for the six- and seven-
move problems, when the smallest obstructor sought.

One explanation for the fAat-ending performance hetng puurcr'th:m fower-
ending pesformance iy he that the latter provides & highly salient external
representation for the ordermg of the poals, whereas the former dues not. A
(arget display such as (321/--1 provides very strong clues that the last can to be
placed 15 3, the second from last 2, and the first 1. However, 3 target such‘ a8
(1/213) provides no such compeliing reminders that small things n?ust be taken
care of before targe things. 1n fact, for all the seven-move, lat-ending pmhiems::
there are Iwo ImImum paths, One of them aclueves s goals 1 the “proper
order, and the other one does not. (See, for example, 13 to 3 via 24 0 the state
diagram, Fig. 7.3.} The more likely that the correct goal orderng 1s not man-
{ained. the longer the solution path will be, because ncorrect goals are generated
dunmg solution. This is exactly what happened: The average solution pa%h tength
s tonger for all flat-ending problems than for corresponding tower-ending prqb-
{ems. There appears to be much more meandermg around the state space with
flat-ending problems. For ower-ending problems, the goal display may serve asa
physical manifestation of the notion of a “goal stack.”

CONCLUDING COMMENTS
What develops? That 18 the theme of this text, and 1 suppose ! should take a stab

at an answer. | must remind you that at this point 10 the research program only
the roughest outlines of a picture are emergng, and much remains 10 he done
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even on this one task, not to mention others. In proposing an answer i go
beyond the limits of the study described here and try to charactenze the ways in
which the question might be answered. There seem to be three kinds of answers,
1 call them the empirical, the characteristic, and the procedural.

Empirical descripttons consist of performance measures and their changes
over time. Typcally, we sec monotonic jmprovements with age, but often 3
careful observational paradigm reveals dips and peaks on specific tasks. It seems
to me thal improvements in both the analysis and the measurement procedures
used in cognitive development research have substantially enhanced the precision
and sterest of answers to what develops simply by pomtmng o the data. For
exampie, i Siegler's (1976} palance scale task we see dramatically different
paths in the passf/fail patterns for different problem types. For the task studied
here, Table 7.4 1s an example of an empirical description of what develops.

A second way to talk about what develops 1s to propose global characteristics
of the child. The child 15 wholistic or analytic, he 15 rule-governed or not, he 1s
familiar with specific stmulus materials, he 1s systematic, he 15 egocentne or
metamemorie. For the Tower of Hanot problem, the characteristic description
of what develops includes terms like orderliness, planfulness, undistractability,
and focus. Sequential ordermng 15 cruesal to problem solutions, furthermore,
the child must focus on the newly generated subgoal and not be misled by the
stilt unsatisfied supergoal. {(In the model proposed, such supergoals are supposed
to be obliterated by new goals. but it 1 difficult to forget on command.} The
child must be able to decompose the desired end state mto a series of attamable,
temporally ordered, ntermediate states, and he must then remtegrate the parts
into a whole.

Finally, we can formulate procedural descriptisis of what develops. The
Tower of Hanor models provide examples. At the present stage of this project,
the propused models are but the roughest approximations o what children
know when they exhibit a particular performance level on this task. Younger
children’s strategies contamn no lests: They are very direct m their attempt 1o
get to the goal. Older children make tests before they move, but they still move
directly, rather than by generaling new goals that are further tested. Only the
most advanced children have the ability both to generate subgoals and to utilize
the concept of the “other” peg.

But remember, there 15 more to the developmental story — even o the pro-
cedural account — than just performance models. The full story of what
develops must account for the psychological processes that enable a child to
listen to the task wstructions, assimilate them to his exsting general problem-
sofving processes, and produce something approximating the performance
models we have previously described. There are several components o that se-
quence, and a child whe can do only two-move problems may differ from one
wha does seven-move profems with respect to any of them, His general
problem-solving abilities may he less, fus assumilation capacily may be made-
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quate, of his miormation-processing syr_,tem may lack tiu:‘ capacity to TuR the
{ésk-speciﬁc model (cf. Klahr, 1976 Klahr & Wallace, 19761 o example, 1 3
Thete seem 10 be ways of 1solating these compuqenls. O £Xa pf i{mm
dy with sdult subjects Neves (1977 s teachung dilferent Tower 0 1
o regies with direct instruction to gel precise measures of the dgmmds they
i::kegon the information-processing sysle@. This pmccduTe' z=.1mmnat:;(i :1::
effects of the general pmbiem—soivmg capacity and the assmnhulcén p:o - t(‘,
in fact, subjects are not even told what the problem 15, they are 10 oz’liy :
sbout making & fmove. We can shed some light on the child’s general capacity
s extending the sorl of analysis described m thus chapter 1o a range of other
t:;‘:oblcms, and such studies are progress i my own {ab. Finally, we im :::::r
the assunilation prohlem by adding to the precision of the mf:asur;s. clg_”)
procedure for petting at jatencies und eye movements {see also Neves, o
would enable us to trace the mformation of the kind uf subroutines — O Proc
alc _ described eatlier.
du[:li :sh;?(]:t:ahiy Slear that. of the thwee lorms of answer 1o the qu;:s'uon of \:':::ir
develups, my preference lies with the procedural. it seems Lo me ! 1;1{,‘}:1'0 'n;c“s’
what the domam weare study g, we aftpmately must muve through charac

s of wh w
e and empnical accousnis Lo ;unccdural descrniptons of what develops. Then we

- "
can all get to work on thse really interesting questian: How
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Counting in the Preschooler:
What Does and
Does Not Develop

fochel Gelman
University of Pennsylvania

For SOme years now, { have contended that preschool children can and do
count to represent the numerical value of a set of objects or pictutes. 1 do not
mean that the young child who 15 able 1o ¢attie ofl the number words 15
necessarily able to count. He may or may nol e able to do so. 1t all depends on
what else he can da with the list of words he ratties off. And as we shall see, the
young child who 1s unable to rattle off the conventional words i the conven-
tonal order may nevertheless be able to count. In short, [ do not rest my claim
that young children can count on their ability to recite the conventional number
words. 1f not thus, then what? To what kind of evidence can | possibly be appeal-
mng? To answer thus question, it 18 necessary Lo consider what 1s wvolved n
counting. Thus, I begin my discusston with a summary of a counting model on
which my husband and I have been working (Geiman & Gallistel, 1977). Next,
1 present data on the extent to which young children's “counts” are governed
by the counting principles outlines m the model.! Finally, 1 addsess the ques-
tions of what does and what does not develop.

THE COUNTING MODEL

What does it mean to say that a young child counts to represent number?
inspection of the vanous count sequences that I have recorded led me to the
view that the young child’s ability to count 15 governed by several principles and

P e

IThe word coun! 15 18 quotation marks to reflect the fact shat we have yet to define the
ability 1o ¢count.
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